
Comenius University, Bratislava
Faculty of Mathematics, Physics and Informatics

A proof assistant
for first-order logic

Bachelor’s Thesis

2018 Zoltán Onódy

Comenius University, Bratislava
Faculty of Mathematics, Physics and Informatics

A proof assistant
for first-order logic

Bachelor’s Thesis

Study programme: Applied Computer Science
Study field: Applied Informatics
Department: Department of Applied Informatics
Supervisor: Mgr. Ján Kľuka, PhD.
Consultant: RNDr. Jozef Šiška, PhD.

Bratislava 2018 Zoltán Onódy

69142122

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Zoltán Onódy
Study programme: Applied Computer Science (Single degree study, bachelor I.

deg., full time form)
Field of Study: Applied Informatics
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: A proof assistant for first-order logic

Annotation: The learning outcomes of mathematics courses at our faculty include
acquisition of the mathematical style of writing and reasoning. Achieving this
goal requires exercises in formulating definitions, propositions, and proofs
with timely feedback. Mathematical language and reasoning use established
constructs whose theoretical models are the language of first-order logic and
formal systems of axioms and derivation rules (Hilbert calculus [1], sequent
calculus [1], semantic tableaux [2], valuation tress [3], etc.). There are, however,
also practical software systems for composition of theories and proofs in
readable formal languages similar to the language of mathematical writing, and
for intelligent automated checking of proofs written in these languages (Mizar,
Isabelle/Isar [4]). Their use in teaching practice is, however, discouraged
by the need to learn the formal language, the mode of interaction with the
software, opaque proof checking (it is not quite clear which leaps of thought
the machine accepts and why), and the need to install software. We thus
aim at developing a web-based environment for development of theories and
interactive composition of proofs from derivation rules expressed in natural
language with easily understandable verification of correctness of each proof
step.

Aim: The goal of the thesis is to design, implement, and test a prototype interactive
assistant for composition of proofs of propositions in first-order logic as
described in Annotation. Correctness will be ensured by basing the design
on a selected suitable formal system [1,2,3]. The assistant should then be
incorporated into a development environment allowing to specify the language
and axioms of a theory and state and prove propositions, using earlier-
proved propositions as lemmata. The implementation will use client-side web
technologies in order to facilitate deployment.

Literature: [1] Barwise, J. (ed.) (1982): Handbook of Mathematical Logic. North Holland.
[2] Smullyan, R.M. (1968): First-Order Logic. Springer.
[3] Kľuka, J. (2011): Modulárne programovanie a verifikácia v druhorádovej
aritmetike. Dizertačná práca. Univerzita Komenského.
[4] Markus Wenzel, Freek Wiedijk (2002): A Comparison of Mizar and Isar. J.
Autom. Reasoning 29(3–4): 389–411.

Keywords: proof assistant, first-order logic, formalized mathematics, client-side web
application

69142122

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Supervisor: Mgr. Ján Kľuka, PhD.
Consultant: RNDr. Jozef Šiška, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 12.10.2017

Approved: 16.10.2017 doc. RNDr. Damas Gruska, PhD.
Guarantor of Study Programme

Student Supervisor

69142122

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Zoltán Onódy
Študijný program: aplikovaná informatika (Jednoodborové štúdium, bakalársky

I. st., denná forma)
Študijný odbor: aplikovaná informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: A proof assistant for first-order logic
Dokazovací asistent pre logiku prvého rádu

Anotácia: K cieľom výučby matematiky na našej fakulte patrí osvojenie si matematického
spôsobu vyjadovania sa a argumentácie. Skutočné osvojenie vyžaduje
precvičovanie formulovania definícií, tvrdení a ich dôkazov s včasnou spätnou
väzbou. Matematický jazyk a argumentácia využívajú ustálené konštrukty,
ktorých teoretickými modelmi sú jazyk logiky prvého rádu a formálne
systémy axióm a odvodzovacích pravidiel (hilbertovský kalkul [1], sekventový
kalkul [1], sémantické tablá [2], valuačné stromy [3], atď.). Vznikli však aj
praktické systémy na zápis teórií a dôkazov tvrdení v čitateľných formálnych
jazykoch blízkych jazyku matematického textu, a na inteligentnú strojovú
kontrolu správnosti takto zapísaných dôkazov (Mizar, Isabelle/Isar [4]). Od
ich použitia pri výučbe však odrádza nutnosť naučiť sa formálny jazyk,
spôsob interakcie, netransparentná kontrola dôkazov (nie je zrejmé, aké skoky
v úvahách stroj akceptuje a prečo) a nutnosť inštalácie softvéru. Naším
zámerom je preto vyvinúť webové prostredie pre zápis teórií a interaktívnu
tvorbu dôkazov zo slovne vyjadrených argumentačných pravidiel s ľahko
pochopiteľnou kontrolou správnosti postupu.

Cieľ: Cieľom práce je navrhnúť, implementovať a otestovať prototyp interaktívneho
asistenta na tvorbu dôkazov tvrdení v logike prvého rádu v zmysle anotácie.
Korektnosť zabezpečí založenie návrhu na vybranom vhodnom formálnom
systéme [1,2,3]. Následne by mal byť asistent zapracovaný do prostredia,
v ktorom je možné špecifikovať jazyk a axiómy teórie, definovať pojmy
a formulovať a dokazovať tvrdenia, pričom skôr dokázané tvrdenia sú
využiteľné ako lemy. Pre jednoduché nasadenie implementácia využije webové
technológie na strane klienta.

Literatúra: [1] Barwise, J. (ed.) (1982): Handbook of Mathematical Logic. North Holland.
[2] Smullyan, R.M. (1968): First-Order Logic. Springer.
[3] Kľuka, J. (2011): Modulárne programovanie a verifikácia v druhorádovej
aritmetike. Dizertačná práca. Univerzita Komenského.
[4] Markus Wenzel, Freek Wiedijk (2002): A Comparison of Mizar and Isar. J.
Autom. Reasoning 29(3–4): 389–411.

Kľúčové
slová:

dokazovací asistent, logika prvého rádu, formalizovaná matematika, webová
aplikácia na strane klienta

Vedúci: Mgr. Ján Kľuka, PhD.

69142122

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Konzultant: RNDr. Jozef Šiška, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 12.10.2017

Dátum schválenia: 16.10.2017 doc. RNDr. Damas Gruska, PhD.
garant študijného programu

študent vedúci práce

iii

Acknowledgments: I’d like to thank especially Mgr. Ján Kľuka, PhD. for his guid-
ance, explanation of mathematical background needed for this work and for thoughtful
comments and useful suggestions. Thanks also goes to RNDr. Jozef Šiška, PhD. for
mentoring me in the programming part of this work. I would like to acknowledge ev-
eryone who tested the proof assistant, namely, in no particular order: Alexandra Ny-
itraiová, Michal Kováč, Jozef Kubík, Daniel Kyselica, Soňa Senkovičová, Dávid Šuba,
Tomáš Velich, Emil Zvarík, Matej Rychtárik and Kryštof Kiss. Many thanks goes once
again to my girlfriend Alexandra Nyitraiová who gave me a lot of feedback during the
tool development.

iv

Abstrakt

Študenti na univerzite majú často problémy osvojiť si matematický štýl uvažovania.
Na zmiernenie tohto problému sme sa rozhodli vytvoriť interaktívny webový doka-
zovací asistent. Náš dokazovací asistent podporuje tri typy dôkazov: priamy dôkaz,
dôkaz analýzou prípadov a dôkaz sporom. Dôkaz je predovšetkým založený na reťazení
tvrdení. Dokazovací asistent overuje, či nové tvrdenia sú logickými dôsledkami pred-
chádzajúcich tvrdení a nejakého inferenčného pravidla, ktoré asistent pozná. To by
malo študentom umožniť sústrediť sa na dôkaz samotný namiesto nepremysleného
skúšania inferenčných pravidiel. Používateľ do asistenta píše sformalizované prvorá-
dové formuly. Dokazovací asistent je postavený nad hybridným formálnym systémom
pozostávajúcim z hilbertovského a sekventového kalkulu a pozná aj ďalšie korektné
inferenčné pravidlá. Asistent bol naprogramovaný vo funkcionálnom programovacom
jazyku Elm. Je funkčným prototypom, ktorý sa bude v budúcnosti ďalej vyvíjať.
Jednoduchosť používania sme testovali so študentmi. Tí nám poskytli pozitívnu a in-
formatívnu spätnú väzbu, ktorú sme čiastočne zapracovali.

Kľúčové slová: dokazovací asistent, logika prvého rádu, formalizovaná matematika,
webová aplikácia na strane klienta

v

Abstract

University students often struggle to master mathematical style of reasoning. In order
to alleviate this problem, we have decided to build an interactive, web-based proof
assistant. Our proof assistant supports three types of proofs: direct proof, proof by
cases, and proof by contradiction. The proof is built primarily by chaining claims. The
proof assistant checks whether a new claim logically follows from previous claims by
some sound basic rule of inference known to it. This should allow students to focus on
intuitively determining logical consequences rather than on finding or blindly trying
inference rules. The user writes the claims as first-order formulas. The proof assistant
is based on a hybrid formal proof system mixing Hilbert calculus and Sequent calculus.
The proof assistant also implements many common additional sound rules of inference.
The application has been implemented in the functional programming language Elm.
It is a working prototype and we expect further development of the project in the
future. The ease of interaction with the proof assistant was tested by students who
gave us positive and informative feedback some of which we have implemented.

Keywords: proof assistant, first-order logic, formalized mathematics, client-side web
application

Contents

Introduction 1

1 Background 2
1.1 Mathematical logic . 2

1.1.1 First-order logic . 2
1.2 Mathematical proofs . 5
1.3 Formal proofs . 7

1.3.1 Formal systems . 7
1.3.2 Hilbert calculus . 8
1.3.3 Sequent calculus . 8

1.4 The programming language Elm . 10
1.4.1 The features of Elm . 11
1.4.2 The Elm Architecture and lifecycle 13
1.4.3 Formula parser . 14
1.4.4 Zipper . 15

1.5 Related work . 17
1.5.1 Isabelle/Isar . 17
1.5.2 Clausal Language (CL) . 17
1.5.3 Fitch . 19
1.5.4 Tableaux editor . 19

2 Design 21
2.1 Requirements analysis . 21
2.2 Proof representation . 22
2.3 Validation . 23
2.4 User interface & user interaction . 24

2.4.1 User interaction . 25
2.4.2 User feedback . 27
2.4.3 History and Persistence . 28

vi

CONTENTS vii

3 Implementation 29
3.1 Code structure . 29
3.2 Formula parser . 30
3.3 Proof tree . 31
3.4 Validation . 32
3.5 History . 33
3.6 Persistence . 34
3.7 User interface . 34

4 Evaluation 36
4.1 Goals and processes . 36
4.2 Feedback from students . 38

Conclusion 42

Appendix A: Source code 43

Introduction

Mathematical courses at our faculty include teaching the mathematical style of writing
and reasoning. Teaching this subject requires exercises in the formulation of definitions,
propositions, and proofs.

Giving feedback to students is time-consuming for the teacher. The problems in
proofs are often in details in some steps rather than the idea behind the proof [7].

One of the possible solutions is using automatic tools – proof assistants – to check
the correctness of the proofs. There are several proof assistants, for example, Is-
abel/Isar, Clausal Language (CL) or Fitch. These proof assistants have various short-
comings from the teaching perspective They are either too powerful, focused on infer-
ence rules of a particular formal system, or they require installation.

The goal of the thesis is to design, implement, and test an interactive prototype of
a proof assistant which is accessible to students and easily extendable in the future.

We aim to develop a web-based application to better support portability and us-
ability. The application should be interactive and check the correctness of each proof
step. In order for a step to be correct, it must be derived from the previous formulas
by some rule of inference. The proof assistant must be sound and complete. These
properties will be ensured by using a suitable formal system such as Hilbert calculus or
Sequent calculus. These formal systems, however, have only fundamental rules which
makes them impractical. We will, therefore, add more sound rules to alleviate the
problem.

This thesis is structured as follows: Section 1 introduces the problem. It discusses
the mathematical background required to build a proof assistant. In Section 2, we
go through the application design and clarify the decisions we have made. Section 3
shows the implementation of the proof assistant, what were the main challenges and
how they were solved. In Section 4, we describe the process and discuss the results of
a usability evaluation of our tool. The thesis concludes with ideas for future work.

1

Chapter 1

Background

To fully understand the content of this thesis it is necessary to understand the math-
ematical background behind it. In this chapter, we explain what mathematical logic
is, define the first-order logic, show the types of frequently used mathematical proofs
and show a formal logical argumentation. We describe the tools we are going to use to
build our application and what applications, similar to the one we intend to develop
in this thesis, already exists.

1.1 Mathematical logic

Mathematical logic is a field exploring the power of formal proof systems close to
theoretical computer science and foundations of mathematics.

1.1.1 First-order logic

Syntax of first-order logic. The language of first-order logic is a set L of words
which are built from non-logical symbols of L and logical symbols. The non-logical
symbols of L are function symbols, relation symbols and constant symbols [6]. Each
function symbol has a number #(f) = n, called its arity; f is then called an n-ary
function symbol. Each relation symbol also has an arity #(R) = n; R is then called
an n-ary relation symbol.

For example let’s have a language L = {∈} of set theory. It has no function or
constant symbols and has one relation symbol for which #(∈) = 2 holds.

To illustrate another example, let’s have L = {+, 0} from group theory. It has one
function symbol (where #(+) = 2), one constant symbol (0) and no relation symbols.

The logical symbols are ∧,∨,¬,=,∀,∃, variables x, y, z, . . . and parentheses) and (
to keep the symbols readable. Each word from L is called an expression. From all the
expressions we want to select those which we can assign a meaning.

2

CHAPTER 1. BACKGROUND 3

The terms of L form the smallest set of expressions containing the variables x, y,
z, . . ., all constant symbols of L and closed under the formation rule: if t1, . . . , tn are
terms of L and if f ∈ L is an n-ary function symbol, then the expression f(t1, . . . , tn)
is a term of L [6]. A closed term is a term in which no variable appears.

For instance, if L = {+, 0} then, the terms are expressions like

+(x, y) and + (0,+(x, 0))

We naturally agree to use
x+ y and 0 + (x+ 0)

instead. Thus moving the function symbol inside and leaving the parentheses off, if
there will be no confusion. We use abbreviation nx for (· · · ((x+ x) + x) + · · ·+ x), n
times for n ≥ 1.

An atomic formula of L is one of the following two expressions: (t1 = t2) where t1
and t2 are terms from L and R(t1, . . . , tn) where R is an n-ary relation symbol from L

and t1, . . . , tn are terms from L [6].
For example, in the language of group theory L = {+, 0} atomic formulas are

(x = 0), (x + y = y + z), Another example is from set theory. In the language
L = {∈} where all terms are variables, the only atomic formulas are those of the form
(v = w) and ∈(vw) for variables v and w. We write the latter as v ∈ w.

The first-order formulas of L form the smallest set of expressions containing atomic
formulas and closed formulas under the formation rules:

(i) If ϕ, ψ are formulas so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ);

(ii) if ϕ is a formula and v is a variable, then ∃vϕ and ∀vϕ are formulas as well [6].

Whenever the same symbol is repeated, we omit the parentheses and we associate
them to the right. Thus

ϕ ∧ ψ ∧ θ is (ϕ ∧ (ψ ∧ θ))

and
ϕ→ ψ → θ is (ϕ→ (ψ → θ))

For example, let L = {+, 0}. The following are formulas:

(x+ y = 0)

∃y(x+ y = 0)

∀x∃y(x+ y = 0)

Notice that the first formula contains 2 free variables. In the second the variable x is
free but y is bound up by existential quantifier (∃) and in the last formula both x and
y are bound up. Only the last formula makes any intuitive sense as an axiom.

CHAPTER 1. BACKGROUND 4

Next, we will define the exact notion of free variable. It is defined by induction on
the length of the formula ϕ.

The set FreeVariables(ϕ) of a formula ϕ is defined as follows:

(i) If ϕ is an atomic formula, then FreeVariables(ϕ) is a set of variables found in ϕ,

(ii) FreeVariables(¬ϕ) = FreeVariables(ϕ),

(iii) FreeVariables(ϕ ∧ ψ) = FreeVariables(ϕ ∨ ψ) =
FreeVariables(ϕ→ ψ) = FreeVariables(ϕ) ∪ FreeVariables(ψ),

(iv) FreeVariables(∃vϕ) = FreeVariables(∀vϕ) = FreeVariables(ϕ)− {v} [6].

A first-order sentence of L is a formula without any free variables [6]. A theory is
a set of sentences.

Formulas with free variables often occur in proofs, free variables can be substituted
for in order to specialize the formula. We define substitution as follows: if ϕ(v) is a
formula and t is a term then ϕ(t/v) (or ϕ(t)) means replacing all the occurrences of
variable v by the term t, assuming that none of the variables in t is bound in ϕ. If
there is any variable bound, we can simple rename the bound variable.

Semantics of first-order logic. Given a language L we have a concept of a structure
for L. The structure M assign interpretations of the relation, function and constant
symbols of L which is precisely defined as follows:

A structure for L is a pair M = 〈M,F 〉 where M is a nonempty set and F is an
operation with domain L such that, writing xM for F (x),

(i) if R ∈ L is an n-ary relation symbol, then RM ⊆Mn;

(ii) if f ∈ L is an n-ary function symbol, then fM : Mn →M ;

(iii) if c ∈ L is a constant symbol then cM ∈M [6].

For example, if L = {+, 0} is a language in group theory, then a structure for L
has the form M = 〈M,+M , 0M〉 where M is a nonempty set, +M : M ×M → M and
0M ∈M .

So far the terms, formulas and sentences are simply a finite strings of symbols. We
need to assign the intended meaning to our logical symbols. This is done by defining
the satisfaction relation M � ϕ between structures and sentences.

Let M = 〈M,F 〉 be a structure for language L. An assignment in M is a function
s with domain the set of variable of L and range a subset of M . An assignment s thus
assigns the meaning s(v) to the variable v. We can then define, tM for each term t

from L, which maps assignments to elements of M .

CHAPTER 1. BACKGROUND 5

Let M be a given structure. For t, a term of L define the value tM of the term t as
follows.

(i) If t is a constant symbol c, then tM(s) = cM for all s;

(ii) if t is a variable v, then tM(s) = s(v) for all s;

(iii) if t is the term f(t1, . . . , tn) then, for all s, define tM(s) = fM(tM1 , . . . , tMn (s)) [6].

In (iii), since each of t1, . . . , tn is simpler than t we can assume by induction on (the
complexity of) terms that tM1 , . . . , tMn are already defined. fM is defined since M is a
structure for L and f ∈ L. The reader should note that if s1(v) = s2(v) agree on all
variables v appearing in t, then tM(s1) = tM(s2). Thus tM, as a function, depends on
only a finite number of values of its argument s.

Let M be a structure for L. We define the relation M � ϕ[s] for all assignments s
and all formulas ϕ as follows [6].

(i) M � (t1 = t2)[s] iff tM1 (s) = tM2 (s),

(ii) M � R(t1, . . . , tn)[s] iff (tM1 (s), . . . , tMn (s)) ∈ RM,

(iii) M � ¬ϕ[s] iff not M � ϕ[s],

(iv) M � (ϕ ∧ ψ)[s] iff M � ϕ[s] and M � ψ[s],

(v) M � (ϕ ∨ ψ)[s] iff M � ϕ[s] or M � ψ[s] or both,

(vi) M � (ϕ→ ψ)[s] iff either not M � ϕ[s] or else M � ψ[s],

(vii) M � (∃vϕ)[s] iff there is an a ∈M such that M � ϕ[s(v/a)],

(viii) M � (∀vϕ)[s] iff for all a ∈M , M � ϕ[s(v/a)].

A formula is called valid if it is satisfied in every structure and under every assign-
ment. A formula ϕ is a logical consequence of a theory T if every structure and every
assignment that satisfy the theory T also satisfy the formula ϕ.

These definitions should cover everything we will need, from first-order logic, for
our proof assistant.

1.2 Mathematical proofs

Proof in mathematics is a demonstration that some statement holds using only valid
and logical steps. In mathematics, there are several types of proofs. In this section,
we are going to show proof examples which include some amount of natural language.
Later, in Section 1.3 we also show formal proofs which completely omit the natural
language.

CHAPTER 1. BACKGROUND 6

Direct proof. The most common method of mathematical proofs is direct proof. The
conclusion is built by combining axioms, definitions and earlier theorems or lemmata.
Let’s see an example of direct proof. Prove that the sum of two even integers is always
even. Let the integers be x and y. As the x and y are even, some x′ and y′ exists such
as x = 2x′ and y = 2y′. Therefore, x + y = 2x′ + 2y′ = 2(x′ + y′). As we can see, the
sum of x + y has a factor of 2, and therefore the sum of any even numbers is an even
number.

Proof by contradiction. In proof by contradiction, we assume that the statement
is false and show that our assumption leads to nonsense. We are therefore led to
conclude that our assumption was wrong and the statement must be true. Let’s see
an example. Prove that there are infinitely many prime numbers. To prove this
statement by contradiction, let’s assume there are finitely many prime numbers p1 <

p2 < ... < pn where pn is the highest prime number. Let’s construct a new number
k = p1 ∗ p2 ∗ ... ∗ pn + 1. This number is not divisible by any prime p1, ..., pn, as there
always be a remainder of 1. Therefore k is either a prime number or there exists a prime
number p such as pn < p < k which divides k without a remainder. In both cases,
there is a prime number higher than pn which is in contradiction with the assumption
that pn is the highest prime number.

Proof by induction. Proof by induction is the type of proof where one proves the
base case and shows that if P (n) holds so does P (n+ 1). Let’s prove

1
2 + 1

4 + 1
8 + ...+ 1

2n
= 2n − 1

2n

As the base case for n = 1 we have
1
2 = 2n − 1

2n
= 21 − 1

21 = 1
2

Our induction hypothesis is
1
2 + 1

4 + 1
8 + ...+ 1

2n
= 2n − 1

2n

We need to prove our induction step

1
2 + 1

4 + 1
8 + ...+ 1

2n
+ 1

2n+1 = 2n+1 − 1
2n+1

by applying the induction hypothesis we get

2n − 1
2n

+ 1
2n+1 = 2n+1 − 1

2n+1

which we can transform
2
2 ∗

2n − 1
2n

+ 1
2n+1 = 2n+1 − 2

2n+1 + 1
2n+1 = 2n+1 − 1

2n+1

CHAPTER 1. BACKGROUND 7

Proof by exhaustion. Proof by exhaustion also known as proof by cases, is the type
of proof where one divide the proof to multiple cases and proves all of them separately.
Let’s see a proof by exhaustion. Prove that if n ∈ Z then n2 +3n+4 is even. We know
that every integer is odd or even. We thus consider two cases: Case 1) n is even. We
know that n = 2k+ 1 for some k. Therefore, n2 + 3n+ 4 = (2k+ 1)2 + 3(2k+ 1) + 4 =
(4k2 + 4k + 1) + (6k + 3) + 4 = 4k2 + 10k + 12 = 2(2k2 + 5k + 6). Case 2) n is odd.
We know that n = 2k for some k. Therefore, n2 + 3n + 4 = (2k)2 + 3(2k) + 4 =
4k2 + 6k + 4 = 2(2k2 + 3k + 2). In both cases we see that the formula n2 + 3n+ 4 has
the factor 2, so the formula is even for any number n.

1.3 Formal proofs

In Section 1.2, we showed proof types which included some amount of natural language.
In this section we will show two formal proof systems - Hilbert calculus and the sequent
calculus.

1.3.1 Formal systems

A rule of inference is a function which takes premises, analysis their syntax and makes
a conclusion. A rule of inference can, for example, look like

X1 : ψ → ϕ ¬ψ → ϕ
ϕ .

An arbitrary formula ϕ is proven if we could prove the formulas ψ → ϕ and ¬ψ → ϕ.
This rule of inference takes two premises and makes one conclusion. It is evident that
to prove those two premises we eventually need a rule of inference which does not take
any premise. That means, different rules of inference can take different numbers of
premises. A rule of inference, which does not take any premise is called a logical axiom
and can be chosen for example as X2 : ϕ→ (ϕ ∨ ψ) and X3 : ϕ→ (ψ ∨ ϕ). With these
three rules we can easily prove in three steps the formula ϕ ∨ ¬ϕ.

1) ϕ→ (ϕ ∨ ¬ϕ) ; from X2

2) ¬ϕ→ (ϕ ∨ ¬ϕ) ; from X3

3) ϕ ∨ ¬ϕ ; from X1 by using 1 and 2

A rule of inference is sound if its conclusion is a logical consequences of its premises.
A formal system, therefore, is a set of rules of inference. The system is called sound

if every formula we can prove from a set of assumptions is a logical consequence of
those assumptions. The system is called complete if from a set of assumptions we can
prove every formula that is their logical consequence.

CHAPTER 1. BACKGROUND 8

1.3.2 Hilbert calculus

Hilbert calculus is a formal proof system with one propositional rule of inference and
two quantifier rules and several axioms.

Propositional logic. We chose the axiom system from the book [16]. These axioms
along with modus ponens (MP) describe classical propositional logic.

MP : ϕ ϕ→ ψ

ψ

A1 : ϕ→ (ψ → ϕ)
A2 : (ϕ→ (ψ → ξ))→ ((ϕ→ ψ)→ (ϕ→ ξ))
A3 : (¬ϕ→ ¬ψ)→ ((¬ϕ→ ψ)→ ϕ)
A4 : (ϕ ∧ ψ)→ ϕ, (ϕ ∧ ψ)→ ψ

A5 : ϕ→ (ψ → (ϕ ∧ ψ))
A6 : ϕ→ (ϕ ∨ ψ), ψ → (ϕ ∨ ψ)
A7 : (ϕ→ ξ)→ ((ψ → ξ)→ ((ϕ ∨ ψ)→ ξ))

First-order logic. To have the first-order logic, we add two more axioms and two
rules of inference for quantifiers [16].

B1: ∀x(ϕ)→ ϕ(x/t) where t may be substituted for x in ϕ
B2: ϕ(x/t)→ ∃xϕ where t may be substituted for x in ϕ

Gen-A: ψ → ϕ

ψ → ∀xϕ where x is not a free variable of ψ

Gen-E: ϕ→ ψ

∃xϕ→ ψ
where x is not a free variable of ψ

Proof in Hilbert calculus. Let T be a theory. A finite sequence of formulas in
Hilbert calculus is called a proof from T if every formula is either an axiom or it
derives from the previous formulas and a rule of inference or is a member of T . A proof
of a formula ϕ from T is a proof from T whose last element is ϕ.

Soundness and completeness. Let T be a theory and ϕ a formula in the following
theorems:

If ϕ is provable in Hilbert calculus from T then ϕ is a logical consequence of T .
If ϕ is a logical consequence of T then ϕ is provable in Hilbert calculus from T .
These two theorems were proven by Švejdar [16].

1.3.3 Sequent calculus

The sequent calculus is a formal proof system with only one axiom and many rules
of inference. In this calculus, in comparison to Hilbert calculus, one does not prove
formulas but sequents.

CHAPTER 1. BACKGROUND 9

A: 〈Γ, ϕ⇒ ∆,ϕ〉

W : 〈Γ ⇒ ∆〉
〈Γ ⇒ ∆,ϕ〉

〈Γ ⇒ ∆〉
〈Γ, ϕ⇒ ∆〉

∨-r: 〈Γ ⇒ ∆,ϕ〉
〈Γ ⇒ ∆,ϕ ∨ ψ〉

〈Γ ⇒ ∆,ϕ〉
〈Γ ⇒ ∆,ψ ∨ ϕ〉

∧-l: 〈Γ, ϕ⇒ ∆〉
〈Γ, ϕ ∧ ψ ⇒ ∆〉

〈Γ, ϕ⇒ ∆〉
〈Γ, ψ ∧ ϕ⇒ ∆〉

∧-r: 〈Γ ⇒ ∆,ϕ〉, 〈Γ ⇒ ∆,ψ〉
〈Γ ⇒ ∆,ϕ ∧ ψ〉

∨-r: 〈Γ, ϕ⇒ ∆〉, 〈Γ, ψ ⇒ ∆〉
〈Γ, ϕ ∨ ψ ⇒ ∆〉

¬-l: 〈Γ ⇒ ∆,ϕ〉
〈Γ,¬ϕ⇒ ∆〉

¬-r: 〈Γ, ϕ⇒ ∆〉
〈Γ ⇒ ∆,¬ϕ〉

→-r: 〈Γ, ϕ⇒ ∆,ψ〉
〈Γ ⇒ ∆,ϕ→ ψ〉

→-l: 〈Γ ⇒ ∆,ϕ〉, 〈Π,ψ ⇒ Λ〉
〈Γ,Π, ϕ→ ψ ⇒ ∆,Λ〉

Cut: 〈Γ ⇒ ∆,ϕ〉, 〈Π,ψ ⇒ Λ〉
〈Γ,Π ⇒ ∆,Λ〉

Table 1.1: Rules in the sequent calculus

Sequent. A sequent is a pair of finite sets of formulas. We write the sequent con-
taining sets ∆ and Γ as 〈Γ ⇒ ∆〉. The intended meaning of the sequent is: if all the
formulas in Γ hold, then at least one formula from ∆ holds as well. The set Γ , in
the sequent, is called antecedent and the set ∆ is called succedent. Both antecedent
and succedent may be empty sets. To simplify the notation of set union, we write Γ, ϕ
instead of Γ ∪ {ϕ}.

Propositional rules. The sequent calculus has rules show in table 1.1.
We see that in comparison to Hilbert calculus, where there is only one rule of

inference and many axioms, in the sequent calculus, there is only one axiom A and
many rules of inference. A is sometimes also called the initial sequent.

CHAPTER 1. BACKGROUND 10

First-order logic. In order to have the first-order logic, we must have new rules for
eliminating and introducing quantifiers. Let ϕ and ψ be first-order formulas and Γ

and ∆ be sets of first-order formulas. We can add the following rules of inference:

∃-r: 〈Γ ⇒ ∆,ϕ(t)〉
〈Γ ⇒ ∆,∃xϕ(x)〉,

∀-l: 〈Γ, ϕ(t)⇒ ∆〉
〈Γ, ∀xϕ(x)⇒ ∆〉

,

∃-l: 〈Γ, ϕ(y)⇒ ∆〉
〈Γ, ∃xϕ(x)⇒ ∆〉

,

∀-r: 〈Γ ⇒ ∆,ϕ(y)〉
〈Γ ⇒ ∆,∀xϕ(x)〉,

where t can be substituted for x in ϕ and y can be substituted for x in ϕ and y is not
a free variable in Γ ∪∆ ∪ {∀xϕ}.

Proof in the sequent calculus. A proof in the sequent calculus is defined as a
finite sequence of sequents where each sequent derives from the previous sequents and
a rule of inference. A proof can be also defined as an oriented tree where each node
is represented by a sequent. The leaf nodes represent the initial sequents and the
remaining nodes derives from one or both children. The root of this tree is the final
sequent.

Soundness and completeness. Sequent 〈Γ ⇒ ∆〉 is called valid if in every struc-
ture and assignment where all formulas from Γ are satisfied at least one formula from
∆ is satisfied. In particular, if T is a finite theory and ϕ is a formula then ϕ is a logical
consequence of T if and only if the sequent 〈T ⇒ {ϕ}〉 is valid.

Let’s state now two theorems. The proofs of these theorems are shown in Švejdar’s
textbook [16].

Every sequent provable in the Sequent calculus is valid.
Every valid sequent is provable in the Sequent calculus.

Cut elimination. Every sequent provable in the sequent calculus can be proven
without the cut rule. The proof of this theorem can be find in Švejdar’s textbook [16].

1.4 The programming language Elm

Elm is a powerful functional language which compiles to JavaScript. Elm has strong
type checking and a well-tested compiler. Compared to JavaScript, pure Elm code is
thus practically free of runtime exceptions. The key features of Elm are mentioned in
the list below.

CHAPTER 1. BACKGROUND 11

Immutability Everything in Elm is immutable, which means no value can be changed
after assignment. When developers try to modify, for example, a record, Elm
creates a copy of the record with the updated value.

Static types Elm is statically typed. However, type annotation is not required. The
compiler can infer the type of a function by the arguments it receives.

Ports Elm and JavaScript can communicate by subscribing to ports for sending and
receiving messages. This allows Elm programs to access the entire JavaScript
ecosystem without losing the benefits of Elm.

Compiler The compiler has very useful and friendly error messages with hints. That
makes compilation errors very easy to fix.

Packages Elm packages have strict version rules. If a declaration of an existing in-
terface is changed, the package’s major release number must change. Developers
can thus safely upgrade package versions without the fear of breaking something.

In the following sections, we will demonstrate Elm, on a running example, which
can evaluate boolean expressions.

1.4.1 The features of Elm

Data types. In most programming languages there are a couple of predefined data
types which developers can use. In Elm, however, developers can easily define their own
types, even recursive ones (by using keywords type and type alias) [2]. This encourages
the creation of clean, type-safe code. A well-designed program then requires fewer unit-
tests as invalid model states are forbidden by definition therefore they are impossible to
occur. If a type error occurs, it is caught at compile time, unlike in dynamically typed
languages such as JavaScript where type errors occur at runtime. Type alias is there
to simplify the type annotations and make them easier to read. It is usually used to
define the type of records. During compilation, type alias is simply replaced where it is
used. Therefore, recursive annotation is forbidden as it would cause an infinitely large
data type. Recursive types can be written by using type similarly to mathematics. The
keyword type also brings the possibility of union types. A union type can connect a
finite number of different types.

In Listing 1.1, we show the definition of the recursive union type – Boolean. Boolean
is an expression built up by conjuctions, disjunctions, negations and constants true and
false. We also show the non-recursive union type Msg which will be used later in the
update function. Lastly, we show the definition of a record which will be used as our
model. This record must contains only a boolean expression.

CHAPTER 1. BACKGROUND 12

1 type Boolean

2 = T

3 | F

4 | Not Boolean

5 | And Boolean Boolean

6 | Or Boolean Boolean

7
8 type Msg = Reset | Simplify

9 type alias Model = { expression : Boolean }

Listing 1.1: Definition of the used types

Pattern matching. There are two conditionals in Elm; if and case. Conditional
if is used for conditions which evaluate to Bool and case is for matching union types.
Union types are taken apart and their constituents can be treated separately. This
enables the invocation of various functions based on the type we work with.

Listing 1.2 shows both types of conditionals. Function boolToBoolean converts the
Bool to Boolean and function evaluate evaluates the boolean expression.

1 boolToBoolean : Bool -> Boolean

2 boolToBoolean bool = if bool then T else F

3
4 evaluate : Boolean -> Bool

5 evaluate expression =

6 case expression of

7 T -> True

8 F -> False

9 Not sub -> not <| evaluate sub

10 And sub1 sub2 -> evaluate sub1 && evaluate sub2

11 Or sub1 sub2 -> evaluate sub1 || evaluate sub2

Listing 1.2: Example of pattern matching

Higher-order helpers. Elm implements many higher-order helpers. Four of them
are worth explicitly mentioning as they will be frequently used in our work.

Name Syntax Example Meaning
Function composition (�) F � G G(F (x))
Function composition (�) F � G F (G(x))
Forward function application (|>) x |> F F (x)
Backward function application (<|) F <| x F (x)

In Listing 1.3, we show the composition of functions evaluate and boolToBoolean.

CHAPTER 1. BACKGROUND 13

1 simplify : Boolean -> Boolean

2 simplify = evaluate >> boolToBoolean

Listing 1.3: Function composition example

1.4.2 The Elm Architecture and lifecycle

Elm has a Model-View-Update architecture. This architecture encourages modularity,
simple code reuse, easy testing and is widespread in current modern web-development
[2].

Model. Model is the state of the application. It stores all the data and is the only
source of truth. The model is defined by types and the compiler verifies and enforces
them.

In Listing 1.4, we show the initial state of our application containing the expression
(T ∨ F) ∧ ¬(T ∧ F). The initial model’s type was defined in Listing 1.1.

1 initialModel : Model

2 initialModel = { expression = And (Or T F) (Not <| And T F) }

Listing 1.4: Initial model of the application

View. View is the application renderer. A function which renders the whole appli-
cation as HTML based on the data stored in the model. Elm views are just plain elm
functions; every HTML element has its function which means the renderer has type
checking. Whenever the update function is executed, elm lifecycle invokes the view
function. In this function, we can set what messages should be dispatched on certain
user action.

In Listing 1.5, we show how to render the HTML elements and how to show the
value of our boolean expression. We also set up the buttons to dispatch Simplify and
Reset messages when the buttons are clicked.

1 view : Model -> Html Msg

2 view model =

3 div []

4 [text <| toString model.expression

5 , button [onClick Simplify] [text "Simplify"]

6 , button [onClick Reset] [text "Reset"]

7]

Listing 1.5: Function rendering the HTML

CHAPTER 1. BACKGROUND 14

Update. Update function modifies the application state based on a message it re-
ceives.

In Listing 1.6, we match the type of the message and either reset the initial appli-
cation state or simplify the expression stored in our application.

1 update : Msg -> Model -> Model

2 update msg model =

3 case msg of

4 Reset -> initialModel

5 Simplify -> { model | expression = simplify model.expression }

Listing 1.6: Update function simplifying the expression

Elm application lifecycle. The lifecycle is very simple. During initialization, the
provided initial model is used by the view function to render the website. Whenever
Elm notices any interaction, either from a user or by the port it had subscribed to, the
update function is invoked. The update function receives the message type and the
current model. Based on the message type, it updates and returns the model, which
causes elm to rerender the website.

In Listing 1.7, we set up the Elm application lifecycle by defining the initial model
and the functions which render and update the model. The code from the previous
listing builds up a simple, working application shown in Figure 1.1.

1 main : Program Never Model Msg

2 main = Html.beginnerProgram

3 { model = initialModel

4 , view = view

5 , update = update

6 }

Listing 1.7: Initial program setup

Figure 1.1: Application built in Section 1.4.

1.4.3 Formula parser

Computers have difficulties to understand natural languages. Therefore, in most cases,
only formal languages are used. A formal language can be defined by an alphabet and
a set of rules called a grammar. These rules define how the string can be formed from
the language’s alphabet with respect to the language’s syntax. Syntactic analysis of

CHAPTER 1. BACKGROUND 15

a formal language is called parsing. To parse a formal language in elm the module
elm-parser is used. It parses the formal language to abstract syntax tree. We need
a parser to parse first-order formulas (1.1.1). The parser for this purpose was already
implemented in Tableaux editor [15]. The definition of the grammar it can parse,
in Backus-Naur form, is shown in Listing 1.8. To keep the listing readable, the self
explanatory non-terminal symbols digit and letter are omitted.

1 symbol_and ::= "&" | "∧" | "/\"

2 symbol_or ::= "|" | "∨" | "\/"

3 symbol_impl ::= "->" | "→"

4 symbol_neg ::= "-" | "¬" | "~"

5 symbol_universal ::= "∀" | "\A" | "\ forall" | "\a"

6 symbol_existential ::= "∃" | "\E" | "\ exists" | "\e"

7
8 ident_character ::= <letter > | <digit > | "_"

9 identifier ::= <letter > | <identifier > <ident_character >

10 spaces ::= "" | " " <spaces >

11
12 atom ::= <identifier > | <identifier > <args >

13 term ::= <identifier > | <identifier > <args >

14 args ::= "(" <spaces > <term > <spaces > <nextArgMore > ")"

15 nextArgMore ::= "" | <nextArg > <nextArgMore >

16 nextArg ::= "," <spaces > <term > <spaces >

17
18 sfs ::= <spaces > <formula > <spaces >

19 quantified ::= <spaces > <identifier > <spaces > <formula >

20
21 formula ::= <atom >

22 | <sfs >

23 | "(" <sfs > ")"

24 | "(" <sfs > <symbol_and > <sfs > ")"

25 | "(" <sfs > <symbol_or > <sfs > ")"

26 | "(" <sfs > <symbol_impl > <sfs > ")"

27 | <symbol_neg > <spaces > <formula >

28 | <symbol_universal > <quantified >

29 | <symbol_existential > <quantified >

Listing 1.8: Parser definition in Backus-Naur form

1.4.4 Zipper

Pure languages like Elm require special handling of certain problems. One of them, for
example, is traveling in a tree.

Traveling in a tree. Traveling down the tree is straightforward. We access and
return the child node. Can we travel back to the root? In pure languages it is not

CHAPTER 1. BACKGROUND 16

possible. When we travel down, we throw away the parent and at that point, we have
only the child. To solve this problem, the child node needs to have a reference to the
parent. Elm, however, has immutable data structures, so it is not possible to create
such a structure. Let’s illustrate the problem in a few steps:

1. Create a child with Nothing for its parent.

2. Create a parent that points at the child.

3. Update the child to point at the parent.

Step three is, however, impossible. When you have immutable data structures,
modification means, creating a new child with an updated value, which has a new
reference. The parent, therefore, still points to the original child. It means we need
some other way to move down in the tree.

Keeping a path to the node. Instead of moving down the tree and throwing away
the parent, we will remember how to get to the node. That means we can access
arbitrary nodes in the tree at any time.

1
4

2

3

5

Figure 1.2: Example of a tree

Let’s demonstrate this in Figure 1.2. When we want to modify the node 3, we store
a path how to access it. So we store the whole tree and the sequence “next step, next
step, case1”. To modify the node 5, we must travel there. We can go up by dropping
the last step of our sequence (now we have “next step, next step”). At this point, we
point to the cases node. Adding “case2, next step” to the previous sequence we get the
path to node 5. We can see this allows us to travel the tree in any direction. In case
of sub-trees, we would need another type of step, which we could call “visit sub-tree”.

This approach allows us to access any element in O(n) time. A faster way for
moving around would be using a zipper.

Zipper. Zipper, basically, introduces a data state. The data state allows us to point
to arbitrary node in the tree. It means we can access the current node seamlessly. A
zipper for a tree is created in a way, that it is possible to move to any direction and
therefore to point to any node. Moving around takes O(n) time, however, once we

CHAPTER 1. BACKGROUND 17

point to the node we want to modify, we can do so in O(1) time. Zipper has two basic
building blocks. The first one is the node (with the sub-tree) which the zipper points
at and the second is information about reconstructing the rest of the tree [10]. A piece
of information about reconstruction is called a breadcrumb.

1.5 Related work

There are a couple of proof assistants similar to our vision. However, none of them
meets all of our requirements. Let’s introduce those proof assistants and demonstrate
them on a proof of first-order De Morgan rule.

1.5.1 Isabelle/Isar

Isabelle/Isar is a semi-automated proving system [14] supporting proof development.
The tool is very powerful and it has no graphical user interface, but comes paired with
an IDE. One can make proofs by programming them in a special syntax called Isar.
The learning curve for its syntax is quite steep. Therefore this tool is not very suitable
for education, especially in the first year at a university. The following listing shows
the proof of a De Morgan rule in Isar.

1 lemma de_Morgan:

2 assumes "¬ (∀ x. P x)"

3 shows "∃ x. ¬ P x"

4 proof (rule classical)

5 assume "¬∃ x. ¬ P x"

6 have "∀ x. P x"

7 proof

8 fix x show "P x"

9 proof (rule classical)

10 assume "¬ P x"

11 then have "∃ x. ¬ P x" ..

12 with ‹¬∃ x. ¬ P x› show ?thesis by contradiction

13 qed

14 qed

15 with ‹¬(∀ x. P x)› show ?thesis by contradiction

16 qed

1.5.2 Clausal Language (CL)

CL is a declarative programming language used since 1997 on Comenius University [7],
built on a logical basis of Peano arithmetics. The CL proof assistant uses a variation
of semantic tableaux with signed formulas and several derived rules. It is a desktop
application which uses web-browser for rendering the proof. Similarly to Isabelle,

CHAPTER 1. BACKGROUND 18

Figure 1.3: Proof of the De Morgan rule in CL proof assitant

the CL proof assistant is also very powerful and uses a special syntax to command the
assistant to apply inference rules.The tool was used in teaching for almost two decades.
However, it is based on outdated technologies and there was no significant development
in recent years. Also, students reportedly [7] used to have difficulties understanding
the automatic inferences made by the assistant and some students used to force it to
solve their homework, without understanding what they were doing. Proof are also
difficult to edit (e.g., no insertion between two existing steps, deleting a step deletes
everything bellow it). These reasons make it difficult to use it in new courses.

Figure 1.3 shows the proof of De Morgan rule in the CL proof assistant. To prove
this rule it is necessary to write to input boxes the following commands:

1 thm De_morgan

2 ~\a xP(x) -> \e x~P(x)

CHAPTER 1. BACKGROUND 19

3 proof

4 inv ~\a xP(x)

5 eigen* \a xP(x); v

6 inst* \e x~P(x); v

7 inv* ~P(v) proved

1.5.3 Fitch

The Fitch system [13] is a proof assistant used in logic course from Stanford University.
It is based on the Fitch calculus. The rules of inference are the main building block of
the proofs. The user selects premises and a rule and the assistant derives its conclusion.
This lead to students focusing on the rules instead of the desired conclusion. We would
also like to have a more intuitive and interactive user interface.

Figure 1.4 shows the proof of a De Morgan rule in this proof assistant.

Figure 1.4: Proof of the De Morgan rule in Fitch

1.5.4 Tableaux editor

Tableaux editor [15] is a proof assistant for building Smullyan’s tableau proofs. It was
developed at Comenius University and is used for teaching Mathematics (4) – Logic

CHAPTER 1. BACKGROUND 20

for Computer Science. The editor works with signed formulas and checks the reasoning
between steps. Currently, it does not support first-order logic. A simple proof that
shows {(b ∨ c), (b→ c)} � c is shown in Figure 1.5.

Figure 1.5: An example of a proof in Tableau editor

Analytic tableaux are not the way we would like to approach our problem so this
tools as is, is not very relevant for us. Expect for the fact that it is a client-side web
application written in Elm.

Chapter 2

Design

This chapter describes the overall design of the proof assistant. Section 2.1 sets the
objectives and the scope of this thesis. Section 2.2 describes the proof representation.
Section 2.3 describes how the proof validation works and Section 2.4 shows the user
interface.

2.1 Requirements analysis

The proof assistant which we are going to build has a couple of requirements. Some
requirements were clear from the beginning but some were not so obvious and were
shaped later during consultations.

The proof assistant must be easily accessible and deployable. Preferably, it should
be a client side web application so students can access it directly in their browsers. A
client side web application would fulfill both requirements and we could easily deploy
and host our application on GitHub Pages [4]. The proof assistant must be reasonably
fast and interactive.

The assistant should support linear proofs similar to Hilbert calculus but instead
of applying modus ponens to the previous formulas we want to write the logical con-
sequences of those formulas.

We also want to be able to state a lemma which we can prove in its sub-proof.
This would be equivalent to the cut rule in Sequent calculus. When we have a formula
which is a disjunction, we want to prove the consequences of the disjuncts separately.
This is called proof by cases and it would be equivalent to ∨-r rule in Sequent calculus.
We also want to be able to make a proof by contradiction. This would be a variation
to the cut rule in Sequent calculus.

The assistant should not be automated, students must make elementary steps which
the assistant must check and inform about the correctness of those steps.

Students should be able to easily interact with the proof assistant, modify the proof,

21

CHAPTER 2. DESIGN 22

save the current state, load it and be able to return to the previous states.

2.2 Proof representation

In order to support the required types of proof (Section 2.1) we represent the proof as
a tree. The tree has two types of nodes: formula node and cases node.

A formula node has zero or one child nodes. The child node represents the next
step in the proof. A formula node can contain a sub-proof which helps to prove the
given formula. A sub-proof does not fork the tree.

A cases node forks the tree. It has exactly two child nodes.
A formula nodes requires an explanation. The explanation gives reason why the

formula is true. The reasons can be that the formula is

• a premise,

• a logical consequence of other formulas on the branch, derivable by a single built-
in rule,

• a goal (or lemma) which will be proven in a sub-proof,

• proven by contradiction in a sub-proof,

• is a first-order formula, created by generalization, which will be proven in a sub-
proof.

The formulas proven in sub-proofs will be available to use in the main branch.

1 2 3 4 9 15

5 6 7 8

14

11 12 13

10

Figure 2.1: Proof tree example

An example of the structure of a proof is shown in Figure 2.1. On the primary level,
there is only one branch 1− 2− 3− 4− 9− 15. Nodes 4 and 9 have sub-proofs. Node 4
therefore can be proven by branch 1− 2− 3− 5− 6− 7− 8. The black circle represents
a cases node. The sub-branch of node 9 is therefore forked in the second step and must
be proven in both 1−2−3−4−10−11−12−13 and 1−2−3−4−10−14 branches.

CHAPTER 2. DESIGN 23

2.3 Validation

The main task of the proof assistant is proof validation. Validation means checking the
syntax of a formula and checking the logical correctness of each step. Every explanation
type mentioned in Section 2.2 need to have a well-formed formula. Therefore, firstly
we check the syntax of the formula by parsing it. If the formula is well-formed, we can
parse it to an abstract syntax tree and run additional validators. If the formula cannot
be parsed, we show the parsing error message and do not run any additional validator.
Different explanation types have different additional validators. The validators for
every explanation type are shown in the list below.:

Premise Premise does not have any additional validation as it is assumed to be cor-
rect. Problem assignments will usually be given as a set of premises.

Rule The rule validator checks that the formula is a consequence of one of the inference
rules and the formulas in the current branch above it.

Goal The goal validator checks whether the goal is proven in its sub-tree. The goal is
proven if we show, by deductive reasoning, that it is valid in every branch of its
sub-tree. The goal node is valid when we either find its formula in the branch or
when there is a contradiction in the branch.

Contradiction The contradiction validator adds the contradicted formula to the
branch and removes the original one. Then, the validator check whether the
explanation is correct the same way as the goal validator.

Cases The cases validator checks that the cases node derives from a formula of type
(A ∨ B). One formula in cases node must be A and the other B, otherwise the
explanation is not valid.

Soundness and completeness. These two properties are required in our proof assis-
tant. Completeness can be achieved by implementing the Hilbert system we described
in Section 1.3.2. To fully support propositional logic, we must implement the seven
basic axioms and the rule modus ponens.

To support first-order logic, we decided to implement the axioms B1 and B2 as rules
of inference:

B1 : ∀x(ϕ)
ϕ(x/t), B2 : ϕ(x/t)

∃xϕ
.

These rules will also check that variable x can by subtituted by t in ϕ.
The rules of inference Gen-A and Gen-E will be treated specially. Gen-A introduces

a universal quantifier. In order to introduce a universal quantifier ∀xϕ, the users will
have to prove, in a sub-proof, the formula ϕ(x/y) where y is a new free variable. This is

CHAPTER 2. DESIGN 24

similar to the sequent calculus: Formulas on the branch where we want to introduce the
universal quantifier can be considered as the antecedent of a sequent and the formula
∀xϕ can be considered a member of the succedent. Our treatment of the quantifier is
then analogous to the rule ∀-r.

Gen-E eliminates an existential quantifier. It will be another special rule of infer-
ence. The rule will receive a premise and a list of free variables in the current branch.
The existential quantifier can be removed and the bound variable can be substituted
with some variable if this variable does not occur free anywhere in the branch. This is
analogous to the rule ∃-l.

We can now implement this hybrid formal system which should be sound and
complete.

On the one hand, this basic system brings soundness and completeness, on the
other hand, it is not very practical for real-life use. We, therefore, implement the rules
of inference from table 2.1 to extend our tool’s usability. Adding new rules of inference
to our system does not change the completeness, however, it can break the soundness.
All the rules we implement can be proven to be sound and, therefore, our system will
remain sound. We also add the rules derived from equivalences in Table 2.2.

2.4 User interface & user interaction

The main purpose of the user interface is to build a tree representing a proof. This
includes: adding new nodes, removing nodes, changing the explanation type of formulas
and modifying the formulas. The proof assistant will assist in this process by giving
feedback about the validity of the proof, validity of the formula’s syntax, traveling back
in time, persistence etc. Let’s now describe some qualities, which are required for our
proof assistant to be effective and easy to use.

Simple to use The learning curve for most of the tools mentioned in Section 1.5 is
very steep. Our goal is to make a good UX so the users can use our applica-
tion without reading manuals. Anyone should feel comfortable using it, just by
checking out some basic examples.

Minimalist Minimalism is key for a good UIs. Too many buttons or options would
distract the user from the proof, and it would, therefore, consume their time.

Powerful Minimalist does not mean idle. The users should be able to do most of the
work they need, such as deleting an incorrect proof branch, changing the proof
type, etc.

Now let’s go through the user interface and specify how the user will interact with
the proof assistant.

CHAPTER 2. DESIGN 25

Law of the excluded middle P ∨ ¬P

Addition P
P ∨Q

Conjunction P Q
P ∧Q

Simplification P ∧Q
P

Implication introduction (2) Q
P → Q

Implication introduction (3) ¬P
P → Q

Modus Ponens (P → Q) P

Q

Modus Tollens (P → Q) ¬Q
¬P

Disjunctive Syllogism ¬P (P ∨Q)
Q

Hypothetical Syllogism (P → Q) (Q→ R)
(P → R)

Constructive Dilemma ((P → Q) ∧ (R→ S)) (P ∨R)
(Q ∨ S)

Destructive Dilemma ((P → Q) ∧ (R→ S)) (¬Q ∨ ¬S)
(¬P ∨ ¬R)

Proof by contradiction (¬P → Q) (¬P → ¬Q)
P

Proof by cases (P → R) (Q→ R)
((P ∨Q)→ R)

Table 2.1: Table of the rules of inference to be implemented

2.4.1 User interaction

The proof assistant must have a minimalist and modern user interface.
All of the action buttons directly modifying the proof will be located next to the

nodes themselves. This will lead to simpler user interaction but will have negative
impact on user experience. For that reason, the action buttons will be by default
shown only on the last added node and others will be hidden. It will be, however,
possible to show all the action buttons for a node if the user needs it.

CHAPTER 2. DESIGN 26

Implication introduction (¬p ∨ q)⇔ (p→ q)
Double negation ¬¬p⇔ p

Commutative
(p ∨ q)⇔ (q ∨ p)
(p ∧ q)⇔ (q ∧ p)

Idempotency
(p ∨ p)⇔ p

(p ∧ p)⇔ p

De Morgan rule
¬(p ∧ r)⇔ (¬p ∨ ¬r)
¬(p ∨ r)⇔ (¬p ∧ ¬r)

Associativity
(p ∨ (q ∨ r))⇔ ((p ∨ q) ∨ r)
(p ∧ (q ∧ r))⇔ ((p ∧ q) ∧ r)

Distributivity
(p ∨ (q ∧ r))⇔ ((p ∨ r) ∧ (p ∨ r))
(p ∧ (q ∨ r))⇔ ((p ∧ r) ∨ (p ∧ r))

Table 2.2: Rules derived from equivalences

When the user clicks on an action button or changes the formula, the changes will
be made immediately without confirmation. This will lead to better user interaction
and give immediate user feedback.

Formulas. The user will write the formulas to input boxes. This means that we will
have all the formulas in plain text and we will have to parse them. The parser details
are explained in Backus-Naur form in Section 1.4.3. There are multiple ways to write
logical connectives in plain text therefore we will not have any buttons for them.

Type of explanations. As there will be several types of explanations, the user
should be able to change and see the chosen explanation easily. This could be achieved
using a dropdown menu, however it would require two clicks to change the explanation.
Therefore, we will implement this functionality using radio buttons. The options, for
the radio buttons, are premise, rule, goal, and contradiction.

Adding next step. Since proofs consist of two types of nodes, there need to be two
types of buttons to add a next step to the existing node. First one will add a formula
node. This button should be available in every node and should insert an empty node
below the current one. The second type of button will add cases node. Inserting a
cases node in the middle of the tree would require to remove the current node’s entire
sub-tree or to set the entire sub-tree as one of the cases. Cases node is however valid
only if it derives from a formula of type A∨B. For this reason, the cases node button
will be available only in leaf nodes.

CHAPTER 2. DESIGN 27

Deletion We not only need to add nodes, but we have to delete them as well. Deletion
is a little more tricky. We must determine what behavior would the user expect to
happen. We defined our delete action as follows: when the user deletes a regular node,
the node along with its sub-proof, if there is one, is deleted but the successor nodes
remain untouched. On the other hand, when the user deletes a cases node, the entire
node along with both its sub-trees are deleted.

Hide sub-proof. Some proof types such as goal or contradiction have a sub-proof –
where the formula is proven. This allows the user to state lemmata and prove them
separately. However, this introduces a lot of GUI complexity as the whole proof is
visible and reduces the focus from the original problem. An easy solution would be to
allow the user to hide the sub-proofs.

2.4.2 User feedback

The secondary purpose of the UI is to give the students feedback on their proofs.
This includes success and error messages. Success messages are information about the
correctness of the explanation in individual nodes. Error messages are messages like
parsing errors or information that the formula is not yet proven.

Numbering. Each proof step should have a unique identifier, for example, an integer.
This will make possible for our proof assistant to show which rule of inference with
which premises were used for validation of the current node. Showing this information
will make our assistant more educational.

Error and Success messages. There are many possible approaches where and how
to show the error or success messages. We were deciding between the following: The
first option was to aggregate them on the top of the page. This would make the user
interface less messy but hard to read in huge proofs, with tens of steps. The second
option was to show every message next to the formula it belongs to. To make the user
interface minimalist, the messages must be compact. We decided to combine these two
options. We will show every message next to the node it belongs to and show a success
or error message on the top of the page base on whether everything is valid or not.
The reason is that the messages next to the node are within the node’s context and on
the top of the page we want to have the information that everything is valid therefore
the goal was proven.

The wireframe in Figure 2.2 shows how a node in the proof will look like. The
figure contains both elements for interaction with the tree and the given feedback by
the proof assistant.

CHAPTER 2. DESIGN 28

Write the formula here
Success message, the formula was matched by rule of inference X from premises N and K.

Premise Consequence Goal Contradiction+ Add node + Add cases - Delete

(1)

Figure 2.2: One node in the proof

2.4.3 History and Persistence

State history As some of the user actions are destructive, such as deleting a goal
node or changing its type to a regular node, we need to have some mechanism to
prevent the user from loosing half of the proof by accident. We can create an “are you
sure” dialog window which would force the users to confirm their action. This dialog
would alleviate the problem. However, it would make the interaction with the proof
assistant less fluent, interrupted by confirmation dialogs. For this reason, we decided
to create a state history. In case the user makes some destructive action by accident,
he can undo the action, returning to the previous state. We will show the user undo
and redo buttons on the top of the page.

Persistence A proof assistant without persistence would not be helpful. If we closed
the window, we would lose our proof. This is a problem for a couple of reason. We
cannot come back to our proof later or send the proof to the teacher. We will, therefore,
serialize our application state to a JSON object. We decided for JSON format because
it is widely supported among programming languages. Serializing and deserializing the
state will allow us to save and load the application state at any stage. We will add save
and load button on the top of the page. The save functionality will allow the teacher to
create an assignment with premises and goals and give it out to students. The students
then could load the assignment, solve it, save it and return it to the teacher.

Chapter 3

Implementation

We have decided to implement our proof assistant in Elm. This decision was made
for a couple of reasons. First, mathematical logic is close to functional programming.
Second, some parts of the proof assistant, such as the formula parser, have already
been implemented in this programming language.

In this chapter, we describe the code structure of our proof assistant (Section 3.1)
and the parser we use for parsing formulas (Section 3.2). We show the structure of
the proof tree and explanation along with the zipper, which is heavily used (Section
3.3). We also describe the validation and how the rules of inference are implemented
(Section 3.4). How we implemented state history (Section 3.5) and persistence (Section
3.6) and lastly, what framework we used for the user interface (Section 3.7). The source
code of our proof assistant can be found in Appendix A on page 43.

3.1 Code structure

We designed our code to have the structure shown in Listing 3.1.
1 index.html

2 styles.css

3 src/

4 - Core/

5 - - Matcher.elm

6 - - Proof.elm

7 - - Types.elm

8 - - Validator.elm

9 - Exporting/

10 - - Json/

11 - - - Decode.elm

12 - - - Encode.elm

13 - - Ports.elm

14 - Editor.elm

15 - History.elm

29

CHAPTER 3. IMPLEMENTATION 30

16 - Main.elm

17 - Zipper.elm

18 tests/

Listing 3.1: Code structure

/index.html contains the HTML skeleton which imports the styles and the compiled
JavaScript. In this file, we also define the JavaScript bindings which are used in
Elm for the persistence layer.

/styles.css contains the application styles which overrides the Bootstrap design.

/src/Main.elm contains code which connects all the parts of the application.

/src/Editor.elm contains all the renderers, which render the HTML for the tool.

/src/Core/ contains the core of the applications such as the representation of the
proof tree, data types we use in our tool, validators and matchers.

/src/Exporting/ contains the persistent layer of our application including JSON se-
rializers, deserializers, and ports which define the communication with native
JavaScript.

/src/History.elm contains code for the application history. It implements the func-
tionality of Undo & Redo buttons.

/src/Zipper.elm contains a proof tree wrapper for moving around in the tree.

/tests/ contains the unit-tests for application logic, especially for matchers.

3.2 Formula parser

The tableau editor [15] already had a parser implemented in Elm. Therefore, making a
new parser would be re-implementing the wheel. We have decided to use the one from
the tableau editor.

The editor itself is currently being upgraded – see the bachelor thesis by Alexandra
Nyitraiová [11]. Having the parser’s code in two separate projects would make it harder
to maintain. Therefore, we have decided to move it to a separate package, publish it on
GitHub [9] and also upload it to Elm packages [8]. This allows us to reuse it seamlessly
in other projects in the future.

In order to make the contribution to the package easier for future contributors, we
have decided to set up a continuous integration server – Travis. Travis checks that the
tests in the parser still pass thus the code is not broken. Travis also checks the code
formatting, by running the automatic code formatter elm-format.

CHAPTER 3. IMPLEMENTATION 31

Elm packages are usually uploaded to http://package.elm-lang.org. To keep
the uploaded packages quality high, Elm packages enforce the maintainers to write
documentation for every exposed function in the module. For this reason, we had to
document all the exposed functions.

3.3 Proof tree

We defined our proof tree as a recursive data type Proof. To match our proof repre-
sentation in Section 2.2, we defined it as shown in Listing 3.2.

1 type Proof

2 = FormulaNode Explanation FormulaStep (Maybe Proof)

3 | CasesNode FormulaStep (Maybe Proof) FormulaStep (Maybe Proof)

4
5 type Explanation

6 = Premise

7 | Rule (Maybe Justification)

8 | Goal (Maybe Proof)

9 | Contradiction (Maybe Proof)

10 | Generalization String (Maybe Proof)

Listing 3.2: Proof tree definition

FormulaNode represents a single node in the tree (step in the proof). It has an ex-
planation, which explains why the step is correct, it has a FormulaStep which contains
data about the step such as plain text and parsed formula, and it has a Maybe Proof
which refers to the next step in the proof. The reason why the next step is optional is
that leaf nodes do not have a successor.

Cases node represents a point in the tree where the proof forks. It has two
FormulaSteps as the cases nodes has two successors, and it also has two Maybe Proof
as those successors can have next steps.

Zipper. To travel in the tree we use a zipper. Our definition of zipper is shown in
Listing 3.3. This definition allows us to fully reconstruct the tree from any particular
node.

1 type alias Zipper =

2 { proof : Proof , breadcrumbs : List Breadcrumb }

3
4 type Breadcrumb

5 = GoDown Explanation FormulaStep

6 | GoCase1 FormulaStep FormulaStep (Maybe Proof)

7 | GoCase2 FormulaStep (Maybe Proof) FormulaStep

8 | GoContradiction FormulaStep (Maybe Proof)

9 | GoGoalProof FormulaStep (Maybe Proof)

http://package.elm-lang.org

CHAPTER 3. IMPLEMENTATION 32

10 | GoAddUniversal FormulaStep String (Maybe Proof)

Listing 3.3: Zipper definition

Now, when we want to move down in the tree, we store the successor node in the
proof and add the appropriate breadcrumb to breadcrumbs. Traveling up in the tree
would mean to recover the parent node. Example functions for traveling down and up
in the tree using our zipper is shown in Listing 3.4.

1 down zipper =

2 case zipper.proof of

3 FormulaNode exp data next ->

4 Maybe.map (\ nextProof ->

5 { zipper

6 | proof = nextProof

7 , breadcrumbs = GoDown exp data :: zipper.breadcrumbs

8 }) next

9 _ -> Nothing

10
11 up zipper =

12 case zipper.breadcrumbs of

13 breadcrumb :: rest ->

14 case breadcrumb of

15 GoDown expl data ->

16 Just

17 { zipper

18 | proof = FormulaNode expl data (Just zipper.proof)

19 , breadcrumbs = rest }

20 ...

21 [] -> Nothing

Listing 3.4: Functions for traveling in zipper

3.4 Validation

Let’s go through how we have implemented the validation designed in Section 2.3.
Validation is defined in two files, Core/Matchers.elm and Core/Validator.elm.

Matchers. Matchers are simple functions which determine whether the formula can
be derived by an inference rule from the previous formulas. We define three types of
matchers, nullary, unary, and binary.

Nullary matchers. Nullary matchers are used for axioms and tautologies. Nullary
matchers take only the formula which needs to be matched. For this reason, each
matcher is executed only once for a particular node.

CHAPTER 3. IMPLEMENTATION 33

Unary matchers. Unary matchers implement inference rules with one premise.
Unary matchers take the formula which needs to be matched and one formula from the
branch. That means, we execute the same matcher n times, where n is the size of the
branch.

Binary matchers. Most of the rules of inference have two premises, and are thus
implemented as binary matchers. Binary matchers take the formula which needs to
be matched and two different formulas from the branch. That means, we execute the
same matcher n2 times, where n is the size of the branch.

Validator. Each time when we change a step in our proof, either by changing the
formula or by changing the type of the step we rerun all the matchers for all the steps
which could be affected. The affected steps must be on the current branch.

3.5 History

We have two choices to implement state history (Section 2.4.3). We can either use
an existing package or create our own. In languages with immutable data structures,
creating the undo/redo functionality is trivial. We have chosen to implement our own
because implementing it has taken only an hour, it is only 70 lines of code and is
customizable to our needs. We need the following properties:

1. Save the current state to the history.

2. Replace the current state in the history – editing text in the formula should not
make a new entry.

3. Go back to the previous state.

4. Go forward to the next state if we went back before.

Custom implementation. The structure shown in Listing 3.5 can fulfill all of our
requirements. To save the current state, we move the old state to prev list, we drop
the next list and save the state to current. To replace the current state, we replace it
in current, this operation will thus not make a new entry in history. To go back, we
move the current to the next list and move the last state from prev list to current.
To go forward, we move current to prev list and move the first state in next list to
current. Actions number one and number two are invoked on user actions which are
modifying the proof tree. Actions number three and four when the user clicks to the
undo/redo buttons.

CHAPTER 3. IMPLEMENTATION 34

1 type alias History m =

2 { current : m

3 , prev : List m

4 , next : List m

5 }

Listing 3.5: History structure

3.6 Persistence

As mentioned in Section 2.4.3 our tool without persistence would be useless. We
decided to create a separate module called Exporting. This module contains three files:
Encode.elm, Decode.elm and Ports.elm.

Saving the proof. Saving the proof requires encoding the application state. Elm
has a core module for encoding the model to JSON. This module, however, works out
of the box only with primitive data types. To be able to serialize custom types, we
must write custom type serializers. These serializers define the format of the serialized
JSON data. To save the data, we use a link which has set the data source and the
HTML attribute download.

Importing the proof. Importing the proof requires decoding the uploaded JSON
file to application state. In Elm, it is not possible to access the uploaded files directly.
We will, therefore, read the data in JavaScript and send it to Elm. Ports can accomplish
communication between Elm and JavaScript. We have two ports, fileSelected – to
let the JavaScript know when the user clicks the button which shows a file dialog
and fileContentRead – to send the selected file content back to Elm. At this point,
we need to deserialize the data using our custom deserializers. If the deserialization
succeeds we replace the application state with the uploaded serialized state.

3.7 User interface

In order to obtain a contemporary visual design of the user interface we have decided
to use Twitter Bootstrap v4. Instead of writing custom HTML elements with classes
and much boilerplate HTML (as it is usually done), we decided to use a module for
this. The elm-bootstrap package aims to make it pleasant and reasonably type safe
to use Bootstrap in Elm applications.

Bootstrap is very useful and saves us much work; however, it has some shortcomings.
One of them is a bug which does not allow to have a validation message on input

CHAPTER 3. IMPLEMENTATION 35

groups1. We had to fix this issue on our own and we also wanted to have a simple
button for proof import. For these reasons, we had to write some custom CSS which
are contained in the file /styles.css.

1See the issue on Github: https://github.com/twbs/bootstrap/issues/23454.

https://github.com/twbs/bootstrap/issues/23454

Chapter 4

Evaluation

This chapter describes the process of evaluation and summarizes how the students
reacted to our proof assistant. It also shows the students’ feedback to the assistant
and describes the next steps we have taken to implement it.

4.1 Goals and processes

This section describes the goals of the evaluation, explains the process of the evaluation
and shows the assignments given to the students.

Goal of evaluation. The goal of the evaluation was to obtain feedback on user
interface and usability. We were particularly interested how the students will able to
use the tool by themselves.

Process of evaluation. At the beginning of the evaluation, we gave out a simple
assignment to the students. When they solved it, we gave them a new one. The
difficulty of those problem assignments was increasing in time. The students were
supposed to solve the problems on their own. We helped them only when they got
stuck. At the end of the evaluation, we conducted an interview with the following five
questions (originally by Milan Cifra [1]):

1. What would you use the tool for?

2. How did the tool help you?

3. Was the user interface intuitive?

4. Would you recommend the tool to someone?

5. What new functionality would you like to see?

36

CHAPTER 4. EVALUATION 37

Assignments and observations. We have given the students five assignments in
total.
Assignment 1: {a→ b, b→ c, a} |= c

The assignment tested that the students can create a linear proof and change the
explanation types of formulas. We observed that they did not know how to write the
set of formulas to the proof assistant. When we told the students that they need to
write one formula per line and they need to mark them as premise, they showed that
c holds easily.
Assignment 2: {a→ b, a→ ¬b} |= ¬a

This assignment tested the ease of using proof by contradiction in the proof assis-
tant. We observed that the students are not confident with proving by contradiction.
When they were told to use proof by contradiction, they managed to solve the problem.
Assignment 3: {a→ ¬b} |= (¬a ∧ ¬a) ∨ ¬b

The assignment tested proof by cases. Most of the students, however, proved it
by contradiction. We asked them to prove it again by cases. A few were struggling
because of a non-informative error message.
Assignment 4: {∀xP (x),∀x(P (x)→ Q(x))} |= ∀xQ(x)

The purpose of this assignment was to try to prove something in first-order logic.
It was clear to the students that they can use substitution, but they did not know how
to prove it. We told them to use the explanation type generalization. This hint was
sufficient as they managed to create the proof quickly.
Assignment 5 (by Gordon S. Novak Jr. [5]):

1. All hounds howl at night.

2. Anyone who has any cats will not have any mice.

3. Light sleepers do not have anything which howls at night.

4. John has either a cat or a hound.

5. (Conclusion) If John is a light sleeper, then John does not have any mice.

The purpose of this assignment was to apply the skills learned in the previous
assignments to a more complex problem. The students got the propositions already
formalized as we did not want to test their skills in formalization. The formalized
propositions are shown below:

1. ∀x(hound(x)→ howl(x))

2. ∀x(∃m(has(x,m) ∧ cat(m))→ ¬∃m(has(x,m) ∧mice(m)))

3. ∀x(light_sleeper(x)→ ¬∃y(has(x, y) ∧ howl(y)))

CHAPTER 4. EVALUATION 38

4. ∃z(has(John, z) ∧ (cat(z) ∨ hound(z))

5. light_sleeper(John)→ ¬∃m(has(John,m) ∧mice(m)))

Figure 4.1 shows a proof of the example proven in our proof assistant (margins and
padding were modified so the screenshot can fit on one page).

4.2 Feedback from students

We tested the proof assistant with ten students of applied informatics with different
knowledge of mathematics. We were testing the user experience of the assistant and
collecting feedback on usability. After the testing, we asked the students five questions.
The summarized answers are in Table 4.1.

Summary. To summarize the feedback from Table 4.1: The students liked the proof
assistant and would also used it in the future, even for homeworks if it would be
possible to submit them in that format. They were missing some features such as De
Morgan rules in first-order logic, tooltips and they would like to have some additional
information about the proof assistant.

Additional feedback. We received much additional feedback as well. This feedback
from the students is paraphrased and grouped in the following list:

Parsing the formulas:

• The tool is great because it also checks the syntax of the formulas.

• We did not know the format of formulas the tool can parse. An example or
some hint under the proof assistant would be helpful.

• The parser’s error messages are hard to read. It would be nicer to show
what exactly is wrong instead of a four line long error message.

Proof tree modification:

• It is not possible to delete the whole proof. It would be helpful when we
finish the exercise and move to another. Refreshing the window does the
work; however, we lose the history of the application.

• At the beginning of the proof we usually write a few premises. It would be
helpful if the default explanation type would be set to be a premise, until
the explanation is changed for the first time. Then, it could be by default
set to consequence.

CHAPTER 4. EVALUATION 39

Figure 4.1: Screenshot of the proof assistant

CHAPTER 4. EVALUATION 40

What would you use the tool for? Number of votes
To check the correctness of my proof. 1
To prove my homework assignment. 2
Both, to prove and to check the correctness. 6
I will not use it in the future. 1

How did the tool help you? Number of votes
I checked the correctness of my proof. 4
I reminded myself of some rules of inference. 2
I saw other types of proof than tableaux. 3

Was the user interface intuitive? Number of votes
Yes, but it needs some improvement. 6
Yes, but examples or a tutorial would be appreciated. 4

Would you recommend the tool to someone? Number of votes
Yes, to check the correctness of my proof. 4
Yes, if we could submit the homework in it. 3
Yes, it has nice design and it is practical. 2

What new functionality would you like to see? Number of votes
De Morgan laws in first order logic. 4
List of rules of inference known to the assistant. 3
Add a proof step before the first one. 2
Show the reason why was the branch closed. 3
Rename the generated new free variable 3
Tool-tips, so the assistant is easier to use. 2

Table 4.1: Summarized feedback from students

The feedback given by the assistant:

• The tool is great. We like that it shows from which rule of inference and
from which steps does the consequence came from.

• The success message of the cases node is above both cases. It would be to
more intuitive to have it under both cases nodes, even if it would mean the
error message is repetitive.

• All the explanation types except for consequence, have the type, written in
front of the formula. At first, it was not clear to us what type of explanation

CHAPTER 4. EVALUATION 41

does the formula have.

• The success messages for sub-proofs are misleading. They show that the
goal was proven even if the steps we used to prove it are wrong.

Other feedback:

• When the browser is accidentally closed, the proof is lost. It could save the
progress to local storage or show a popup asking whether we want to close
it.

• Hiding the sub-proof is an excellent feature. It allows us to concentrate only
on the part of the proof we are currently working on.

Conclusion. The feedback we received was informative with a lot of good sugges-
tions.

We have decided to implement some of the functionality the students wanted to
have. De Morgan laws in first-order logic and renaming the generated new free variable
was implemented right after the testing. Other requests have either low priority or are
very time-consuming to implement and therefore they are left as future work.

To summarize the testing, the testers considered our proof assistant helpful and it
will probably be able to help the students to learn proper mathematics proofs; however,
there is still space for improvement.

Conclusion

We have designed, implemented and tested a prototype of a proof assistant working
with first-order logic (the proof assistant is accessible at https://fmfi-uk-1-ain-412.
github.io/proof-assistant/), and described the process and our results in this the-
sis. The proof assistant is based on a hybrid formal proof system mixing Hilbert calculus
and Sequent calculus. The proof assistant allows three types of proofs: direct proof,
proof by cases, and proof by contradiction. The user creates a proof tree consisting
of formalized first-order formulas, each with an explanation. Some explanations are
automatically verified by the assistant using built-in inference rules and some require
sub-proofs. The proven formulas can be later used in the proof.

The proof assistant has been implemented in the functional programming language
Elm. Elm seems to be the right choice for this project. Thanks to its powerful and type-
safe compiler we saved much valuable time. Since we expect third-party contributions
to the project in the future, we wrote unit-tests for the critical parts of the application
and published the code under MIT license.

We tested the proof assistant with ten students during evaluation. We received a
lot of positive and informative feedback.

By building a working prototype of the proof assistant, we have achieved the goal
of this thesis. The proof assistant is already helpful; however, there is still space for
improvement. The primary improvement is to implement the first-order logic with
equality. The secondary improvement is to make the rules of inference configurable.
Currently, the editor has a fixed set of rules. If it would be configurable, the teacher
could specify which rules can be used in a particular exercise. Another useful improve-
ment would be telling the user, which branches were closed due to contradiction and
which branches were proven to be correct. These features are however left for future
work.

42

https://fmfi-uk-1-ain-412.github.io/proof-assistant/
https://fmfi-uk-1-ain-412.github.io/proof-assistant/

Appendix A: Source code

The source code of the proof assistant can be found on the attached CD and is also
available online at https://github.com/FMFI-UK-1-AIN-412/proof-assistant.

The proof assistant itself can be found online at https://fmfi-uk-1-ain-412.
github.io/proof-assistant/.

The source code on the attached CD has the following structure:

/bin/ contains the compiled code. To open the proof assistant open index.html in
the browser.

/src/ contains the source code of the proof assistant, licence in LICENSE and also some
information how to set up the development environment in README.md.

43

https://github.com/FMFI-UK-1-AIN-412/proof-assistant
https://fmfi-uk-1-ain-412.github.io/proof-assistant/
https://fmfi-uk-1-ain-412.github.io/proof-assistant/

Bibliography

[1] Milan Cifra. Prieskumník sémantiky logiky prvého rádu. Univerzita Komenského
v Bratislave, 2018. Submitted.

[2] Evan Czaplicki. An introduction to elm. [online; accessed May 16, 2018]. https:
//legacy.gitbook.com/book/evancz/an-introduction-to-elm/details.

[3] Herbert Enderton. A mathematical introduction to logic. Academic Press, San
Diego, California, 2001.

[4] GitHub, Inc. Github pages. https://pages.github.com/.

[5] Gordon S. Novak Jr. Resolution example and exercises. [online; accessed May 16,
2018]. https://www.cs.utexas.edu/users/novak/reso.html.

[6] Kenneth Kunen, Jon Barwise, and Howard Jerome Keisler. Handbook of mathe-
matical logic. North-Holland Publishing Co., 1983.

[7] Ján Kľuka. [personal communication, 2018].

[8] Ján Kľuka, Jozef Šiška, Alexandra Nyitraiová, and Zoltán Onódy. Package
for parsing first-order logic formulas. [online; accessed May 20, 2018]. http:
//package.elm-lang.org/packages/FMFI-UK-1-AIN-412/elm-formula.

[9] Ján Kľuka, Jozef Šiška, Alexandra Nyitraiová, and Zoltán Onódy. Parser for
first-order logic formulas. [online; accessed May 20, 2018]. https://github.com/
FMFI-UK-1-AIN-412/elm-formula.

[10] Miran Lipovaca. Learn You a Haskell for Great Good!: A Beginner’s Guide. No
Starch Press, 2011.

[11] Alexandra Nyitraiová. Educational tools for first-order logic. Comenius University,
Bratislava, 2018. Submitted.

[12] Raymond R. Smullyan. First-Order Logic. Springer, 1968.

[13] Stanford University. Fitch system. [online; accessed January 29, 2018]. http:
//logic.stanford.edu/intrologic/glossary/fitch_system.html.

44

https://legacy.gitbook.com/book/evancz/an-introduction-to-elm/details
https://legacy.gitbook.com/book/evancz/an-introduction-to-elm/details
https://pages.github.com/
https://www.cs.utexas.edu/users/novak/reso.html
http://package.elm-lang.org/packages/FMFI-UK-1-AIN-412/elm-formula
http://package.elm-lang.org/packages/FMFI-UK-1-AIN-412/elm-formula
https://github.com/FMFI-UK-1-AIN-412/elm-formula
https://github.com/FMFI-UK-1-AIN-412/elm-formula
http://logic.stanford.edu/intrologic/glossary/fitch_system.html
http://logic.stanford.edu/intrologic/glossary/fitch_system.html

BIBLIOGRAPHY 45

[14] University of Cambridge, Technical University of Munich. Isar - intelligible semi-
automated reasoning. [online; accessed January 29, 2018]. https://isabelle.
in.tum.de/Isar/.

[15] Jozef Šiška. Propositional tableau editor. [online; accessed January 29, 2018].
https://github.com/FMFI-UK-1-AIN-412/tableauEditor.

[16] Vítězslav Švejdar. Logika : neúplnost, složitost a nutnost. Academia, Praha, 2002.

https://isabelle.in.tum.de/Isar/
https://isabelle.in.tum.de/Isar/
https://github.com/FMFI-UK-1-AIN-412/tableauEditor

	Introduction
	Background
	Mathematical logic
	First-order logic

	Mathematical proofs
	Formal proofs
	Formal systems
	Hilbert calculus
	Sequent calculus

	The programming language Elm
	The features of Elm
	The Elm Architecture and lifecycle
	Formula parser
	Zipper

	Related work
	Isabelle/Isar
	Clausal Language (CL)
	Fitch
	Tableaux editor

	Design
	Requirements analysis
	Proof representation
	Validation
	User interface & user interaction
	User interaction
	User feedback
	History and Persistence

	Implementation
	Code structure
	Formula parser
	Proof tree
	Validation
	History
	Persistence
	User interface

	Evaluation
	Goals and processes
	Feedback from students

	Conclusion
	Appendix A: Source code

